Illness-specific tau filaments assemble by way of polymorphic intermediates

on

|

views

and

comments


  • Peng, C., Trojanowski, J. Q. & Lee, V. M.-Y. Protein transmission in neurodegenerative illness. Nat. Rev. Neurol. 16, 199–212 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson, D. M. et al. Hallmarks of neurodegenerative illnesses. Cell 186, 693–714 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lövestam, S. et al. Meeting of recombinant tau into filaments equivalent to these of Alzheimer’s illness and persistent traumatic encephalopathy. Elife 11, e76494 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arseni, D. et al. TDP-43 varieties amyloid filaments with a definite fold in sort A FTLD-TDP. Nature 620, 898–903 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arseni, D. et al. Construction of pathological TDP-43 filaments from ALS with FTLD. Nature 601, 139–143 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Falcon, B. et al. Novel tau filament fold in persistent traumatic encephalopathy encloses hydrophobic molecules. Nature 568, 420–423 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falcon, B. et al. Buildings of filaments from Choose’s illness reveal a novel tau protein fold. Nature 561, 137–140 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitzpatrick, A. W. P. et al. Cryo-EM constructions of tau filaments from Alzheimer’s illness. Nature 547, 185–190 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schweighauser, M. et al. Buildings of α-synuclein filaments from a number of system atrophy. Nature 585, 464–469 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, Y. et al. Construction-based classification of tauopathies. Nature 598, 359–363 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. et al. Buildings of α-synuclein filaments from human brains with Lewy pathology. Nature 610, 791–795 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W. et al. Novel tau filament fold in corticobasal degeneration. Nature 580, 283–287 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kayed, R. et al. Frequent construction of soluble amyloid oligomers implies widespread mechanism of pathogenesis. Science 300, 486–489 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • van Dyck, C. H. et al. Lecanemab in early Alzheimer’s illness. N. Engl. J. Med. 388, 9–21 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lannfelt, L. et al. Views on future Alzheimer therapies: amyloid-β protofibrils – a brand new goal for immunotherapy with BAN2401 in Alzheimer’s illness. Alzheimers Res. Ther. 6, 16 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartley, D. M. et al. Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological modifications and progressive neurotoxicity in cortical neurons. J. Neurosci. 19, 8876–8884 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lambert, M. P. et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl Acad. Sci. USA 95, 6448–6453 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeda, S. et al. Granular tau oligomers as intermediates of tau filaments. Biochemistry 46, 3856–3861 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conway, Ok. A., Harper, J. D. & Lansbury, P. T. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson illness. Nat. Med. 4, 1318–1320 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Cryo-EM constructions of amyloid-β 42 filaments from human brains. Science 375, 167–172 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wischik, C. M. et al. Isolation of a fraction of tau derived from the core of the paired helical filament of Alzheimer illness. Proc. Natl Acad. Sci. USA 85, 4506–4510 (1988).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukrasch, M. D. et al. Structural polymorphism of 441-residue Tau at single residue decision. PLoS Biol. 7, e1000034 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daebel, V. et al. β-Sheet core of tau paired helical filaments revealed by solid-state NMR. J. Am. Chem. Soc. 134, 13982–13989 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mukrasch, M. D. et al. Websites of tau essential for aggregation populate β-structure and bind to microtubules and polyanions. J. Biol. Chem. 280, 24978–24986 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan, S. N. et al. Distribution of pico- and nanosecond motions in disordered proteins from nuclear spin leisure. Biophys. J. 109, 988–999 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jarrett, J. T. & Lansbury, P. T. Seeding ‘one-dimensional crystallization’ of amyloid: a pathogenic mechanism in Alzheimer’s illness and scrapie? Cell 73, 1055–1058 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stern, A. M. et al. Ample Aβ fibrils in ultracentrifugal supernatants of aqueous extracts from Alzheimer’s illness brains. Neuron 111, 2012–2020 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weismiller, H. A. et al. Structural dysfunction in four-repeat Tau fibrils reveals a brand new mechanism for boundaries to cross-seeding of Tau isoforms. J. Biol. Chem. 293, 17336–17348 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, S. & Scheres, S. H. W. Helical reconstruction in RELION. J. Struct. Biol. 198, 163–176 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sawaya, M. R. et al. Atomic constructions of amyloid cross-beta spines reveal different steric zippers. Nature 447, 453–457 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiltzius, J. J. W. et al. Molecular mechanisms for protein-encoded inheritance. Nat. Struct. Mol. Biol. 16, 973–978 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ostwald, W. Studien über die Bildung und Umwandlung fester Körper: 1. Abhandlung: Übersättigung und Überkaltung. Z. Phys. Chem. 22U, 289–330 (1897).

    Article 

    Google Scholar
     

  • von Bergen, M. et al. Meeting of tau protein into Alzheimer paired helical filaments will depend on a neighborhood sequence motif ((306)VQIVYK(311)) forming beta construction. Proc. Natl Acad. Sci. USA 97, 5129–5134 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Macdonald, J. A. et al. Meeting of transgenic human P301S Tau is important for neurodegeneration in murine spinal twine. Acta Neuropathol. Commun. 7, 44 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falcon, B. et al. Conformation determines the seeding potencies of native and recombinant Tau aggregates. J. Biol. Chem. 290, 1049–1065 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, C. et al. Identification of key amino acids liable for the distinct aggregation properties of microtubule‐related protein 2 and tau. J. Neurochem. 135, 19–26 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldsbury, C., Kistler, J., Aebi, U., Arvinte, T. & Cooper, G. J. Watching amyloid fibrils develop by time-lapse atomic pressure microscopy. J. Mol. Biol. 285, 33–39 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiti, F. et al. Kinetic partitioning of protein folding and aggregation. Nat. Struct. Mol. Biol. 9, 137–143 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Fernandez-Escamilla, A.-M., Rousseau, F., Schymkowitz, J. & Serrano, L. Prediction of sequence-dependent and mutational results on the aggregation of peptides and proteins. Nat. Biotechnol. 22, 1302–1306 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giasson, B. I., Murray, I. V., Trojanowski, J. Q. & Lee, V. M. A hydrophobic stretch of 12 amino acid residues in the midst of α-synuclein is important for filament meeting. J. Biol. Chem. 276, 2380–2386 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, L.-L. et al. Structural transformation of the amyloidogenic core area of TDP-43 protein initiates its aggregation and cytoplasmic inclusion. J. Biol. Chem. 288, 19614–19624 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrone, F. A., Hofrichter, J., Sunshine, H. R. & Eaton, W. A. Kinetic research on photolysis-induced gelation of sickle cell hemoglobin counsel a brand new mechanism. Biophys. J. 32, 361–380 (1980).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Törnquist, M. et al. Secondary nucleation in amyloid formation. Chem. Commun. 54, 8667–8684 (2018).

    Article 

    Google Scholar
     

  • Zhang, W. et al. Heparin-induced tau filaments are polymorphic and differ from these in Alzheimer’s and Choose’s illnesses. Elife 8, e43584 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radamaker, L. et al. Cryo-EM reveals structural breaks in a patient-derived amyloid fibril from systemic AL amyloidosis. Nat. Commun. 12, 875 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, J. L. et al. TDP-43 skeins present properties of amyloid in a subset of ALS circumstances. Acta Neuropathol. 125, 121–131 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LeVine, H. Thioflavine T interplay with amyloid β-sheet constructions. Amyloid 2, 1–6 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knowles, T. P. J. et al. An analytical resolution to the kinetics of breakable filament meeting. Science 326, 1533–1537 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lövestam, S. et al. Seeded meeting in vitro doesn’t replicate the constructions of α-synuclein filaments from a number of system atrophy. FEBS Open Bio 11, 999–1013 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarutani, A. et al. Cryo-EM constructions of tau filaments from SH-SY5Y cells seeded with mind extracts from circumstances of Alzheimer’s illness and corticobasal degeneration. FEBS Open Bio 13, 1394–1404 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirbaha, H. et al. Inert and seed-competent tau monomers counsel structural origins of aggregation. eLife 7, e36584 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, A. M., Thomas, T. L., Woodard, D. R., Kashmer, O. M. & Diamond, M. I. Tau monomer encodes strains. eLife 7, e37813 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Studier, F. W. Protein manufacturing by auto-induction in excessive density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schuck, P. On the evaluation of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal. Biochem. 320, 104–124 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laue, T. M., Shah, B. D., Ridgeway, T. M. & Pelletier, S. L. Pc-aided interpretation of sedimentation information for proteins. In Analytical Ultracentrifugation in Biochemistry and Polymer Science (eds Harding, S. E., Horton, J. C. & Rowe, A. J.) 90–125 (Royal Society of Chemistry, 1992).

  • Brautigam, C. A. Calculations and publication-quality illustrations for analytical ultracentrifugation information. Strategies Enzymol. 562, 109–133 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system primarily based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kazimierczuk, Ok. & Orekhov, V. Y. Accelerated NMR spectroscopy by utilizing compressed sensing. Angew. Chem. Int. Ed. Engl. 50, 5556–5559 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, Y.-S. & Zweckstetter, M. Mars – sturdy computerized spine project of proteins. J. Biomol. NMR 30, 11–23 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kjaergaard, M., Brander, S. & Poulsen, F. M. Random coil chemical shift for intrinsically disordered proteins: results of temperature and pH. J. Biomol. NMR 49, 139–149 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kjaergaard, M. & Poulsen, F. M. Sequence correction of random coil chemical shifts: correlation between neighbor correction components and modifications within the Ramachandran distribution. J. Biomol. NMR 50, 157–165 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwarzinger, S. et al. Sequence-dependent correction of random coil NMR chemical shifts. J. Am. Chem. Soc. 123, 2970–2978 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pelupessy, P., Ferrage, F. & Bodenhausen, G. Correct measurement of longitudinal cross-relaxation charges in nuclear magnetic resonance. J. Chem. Phys. 126, 134508 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rezaei-Ghaleh, N., Giller, Ok., Becker, S. & Zweckstetter, M. Impact of zinc binding on β-amyloid construction and dynamics: implications for Aβ aggregation. Biophys. J. 101, 1202–1211 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zivanov, J. et al. New instruments for automated high-resolution cryo-EM construction willpower in RELION-3. Elife 7, e42166 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian strategy to beam-induced movement correction in cryo-EM single-particle evaluation. IUCrJ 6, 5–17 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohou, A. & Grigorieff, N. CTFFIND4: quick and correct defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New instruments for automated cryo-EM single-particle evaluation in RELION-4.0. Biochem. J. 478, 4169–4185 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bepler, T. et al. Constructive-unlabeled convolutional neural networks for particle selecting in cryo-electron micrographs. Nat. Strategies 16, 1153–1160 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lövestam, S. & Scheres, S. H. W. Excessive-throughput cryo-EM construction willpower of amyloids. Faraday Talk about. 240, 243–260 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pothula, Ok. R., Geraets, J. A., Ferber, I. I. & Schröder, G. F. Clustering polymorphs of tau and IAPP fibrils with the CHEP algorithm. Prog. Biophys. Mol. Biol. 160, 16–25 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scheres, S. H. W. Amyloid construction willpower in RELION-3.1. Acta Crystallogr. D 76, 94–101 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kimanius, D. et al. Information-driven regularisation lowers the scale barrier of cryo-EM construction willpower. Preprint at bioRxiv https://doi.org/10.1101/2023.10.23.563586 (2023).

  • Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM information units in RELION-3.1. IUCrJ 7, 253–267 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casañal, A., Lohkamp, B. & Emsley, P. Present developments in Coot for macromolecular mannequin constructing of electron cryo-microscopy and crystallographic information. Protein Sci. 29, 1069–1078 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jamali, Ok. et al. Automated mannequin constructing and protein identification in cryo-EM maps. Preprint at bioRxiv https://doi.org/10.1101/2023.05.16.541002 (2023).

  • Croll, T. I. ISOLDE: a bodily life like setting for mannequin constructing into low-resolution electron-density maps. Acta Crystallogr. D 74, 519–530 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: construction visualization for researchers, educators, and builders. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sawaya, M. R., Hughes, M. P., Rodriguez, J. A., Riek, R. & Eisenberg, D. S. The increasing amyloid household: construction, stability, perform, and pathogenesis. Cell 184, 4857–4873 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Share this
    Tags

    Must-read

    Do not Miss These 7 Factors When Promoting Your Panorama Enterprise

     Don’t be afraid to ask your finest purchasers if you happen to can function them in a case research, notes Diller. These “tales...

    12 Finest Locations to Stay in North Carolina (By Residing High quality Index)

    4 This publish might have affiliate hyperlinks, the place I obtain a fee if you buy by them. This is our Disclosure and Privateness...
    spot_img

    Recent articles

    More like this

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here